
Lecture 6b
Linked List Variations

Similar but not the same

Linked List Variations: Overview
 The linked list implementation used in List ADT is

known as Singly (Single) Linked List
 Each node has one pointer (a single link),

pointing to the next node in sequence

 Using pointers allow the node to be non-
contiguous:
 flexible organizations in chaining up the nodes

 Several high level ADTs utilize variations of
linked list as internal data structure

 Let's look at a few common choices
[CS1020E AY1617S1 Lecture 6b] 2

Common Variations: At a glance
 Using list node with one pointer:

1. Tailed Linked List
2. Circular Linked List
3. Linked List with a dummy head node

 Using list node with two pointers:
1. Doubly linked list
2. Circular doubly linked list

 Other variations are possible:
 Once you understand the fundamental, it is quite

easy to extend to other organizations!
[CS1020E AY1617S1 Lecture 6b] 3

Tailed Linked List

Head and tail: First and last

Tailed Linked List

a1 a2 a3 a4

 Motivation:
 The last node in singly linked list takes the longest

time to reach
 If we keep adding item to the end of list

(some applications require this)  very inefficient
 Simple addition:

 Keep an additional pointer to point to the last node

[CS1020E AY1617S1 Lecture 6b] 5

head tail

Circular Linked List

Go round and round

Circular Linked List

a1 a2 a3 a4

 Motivation:
 Sometimes we need to repeatedly go through the

list from 1st node to last node, then restart from
1st node, ….

 Simple addition:
 Just link the last node back to the first node
 No NULL pointer in the linked list

[CS1020E AY1617S1 Lecture 6b] 7

head

Circular Linked List: Even Better

a1 a2 a3 a4

 Circular Linked List can be made even better:
 Keep the tail pointer instead of head pointer
 We now know both the first node and the last

node with a single pointer
 Simple addition:

 Keep track of the tail pointer

[CS1020E AY1617S1 Lecture 6b] 8

tailHow do we get to the first
node with just the tail pointer?

Circular Linked List: Common Code
 Given a circular linked list:
 How do we know we have passed through every

nodes in the list?
 Idea:
 If we land on a node again (e.g. the first node),

then we have finished one round

9[CS1020E AY1617S1 Lecture 6b]

curPtr = head;
do {

// visit the node curPtr points to
curPtr = curPtr->next;

} while (curPtr != head); Simple solution
as long as the
list is not empty

Dummy Head Node

There is a dummy in front!!

Linked List with Dummy Head Node

a1 a2 a3 a4

 Motivation:
 Insert/Remove the first node in linked list is a special

case:
 Because we need to update the head pointer

 Idea:
 Maintain an extra node at the beginning of the list

 Not used to store real element
 Only to simplify the coding

[CS1020E AY1617S1 Lecture 6b] 11

head

Doubly Linked List

Two is better than one

Doubly Linked List: Motivation

 Singly Linked List only facilitates movement
in one direction
 Can get to the next node in sequence easily
 Cannot go to the previous node

 Doubly Linked List facilitates movement in
both directions
 Can get to the next node in sequence easily
 Can get to the previous node in sequence easily

[CS1020E AY1617S1 Lecture 6b] 13

[CS1020E AY1617S1 Lecture 6b]

A single node in the Doubly Linked List

struct DListNode {
int item;
DListNode *prev;
DListNode *next;

};

item

prev DListNode

Store a single
integer in this

example

14

next

A pointer to the
previous node in

list
A pointer to the

next node in list,
similar to singly

linked list

An example of Doubly Linked List
 List of four items < a1, a2, a3, a4 >

A single DListNode

a1 a2 a3 a4

next pointer
prev pointer

 We need:
 head pointer to indicate the first node
 NULL in the prev pointer field of first node
 NULL in the next pointer field of last node

[CS1020E AY1617S1 Lecture 6b] 15

head

Doubly Linked List: Operations
 Insertion and removal in doubly linked list has

the similar steps as in singly linked list:
 Locate the point of interest through list traversal
 Modify the pointers in affected nodes

 However, insertion and removal affects more
nodes in doubly linked list:
 Both the nodes before and after the point of

operation are affected

 We only show the general case for insertion and
removal in the next section
 Try to figure out the code for other special cases

16[CS1020E AY1617S1 Lecture 6b]

Doubly Linked List: General Insertion
 Assume we have the following:

 newPtr pointer:
 Pointing to the new node to be inserted

 cur pointers:
 Use list traversal to locate this node
 The new node is to be inserted before this node

cur

…

newPtr
Insert here

head

a1 ai ai+1…

[CS1020E AY1617S1 Lecture 6b] 17

anew

anew

Doubly Linked List: General Insertion

newPtr

Step 1:

newPtr->next = cur;
newPtr->prev = cur->prev;

Step 2:

cur->prev->next = newPtr;
cur->prev = newPtr;

cur

ai ai+1

anew

newPtr

cur

ai ai+1

[CS1020E AY1617S1 Lecture 6b] 18

Doubly Linked List: General Deletion

 Assume we have the following:
 cur pointer:

 Points to the node to be deleted

cur

…

head

a0 ai ai+1…

Delete this node

[CS1020E AY1617S1 Lecture 6b] 19

ai+2

Deletion: Using Doubly Linked List

Step 1:

cur->prev->next = cur->next;
cur->next->prev = cur->prev;

Step 2:

delete cur;
cur = NULL;

cur

ai+1

ai+2

cur

ai ai+1

ai+2

ai

[CS1020E AY1617S1 Lecture 6b] 20

Linked List Variation: More?
 By using the ideas discussed,

we can easily construct:
 Tailed Double Linked List
 Doubly Linked List with dummy head node
 Circular Doubly Linked List
 etc…

 Rather than memorizing the variations:
 Make sure you understand the basic of pointer

manipulation
 Make sure you can reason about the pros and

cons of each type of organization

21[CS1020E AY1617S1 Lecture 6b]

http://visualgo.net/list
 VisuAlgo version:

 With Tail Pointer, Not Circular, Without Dummy Head
 Operations Supported (integer list only):

 Create List: Random, R Sorted, R Fixed Size, User Defined List
 Insert: At Head, At Tail, At Index K
 Remove: At Head, At Tail, At Index K
 Search

 Please explore:
 http://visualgo.net/list,

Single Linked List
 http://visualgo.net/list

?mode=DLL,
Doubly Linked List

22[CS1020E AY1617S1 Lecture 6b]

C++ STL list
 Do we have to code ListLL.cpp (and all these

variations and special cases) every time we
need to use a Linked List?

 Fortunately, no 
 We can use C++ STL list
 http://en.cppreference.com/w/cpp/container/list

23[CS1020E AY1617S1 Lecture 6b]

Summary
 Singly Linked List with Dummy Head Node
 Tailed Singly Linked List
 Circular Singly Linked List
 Doubly Linked List
 Exposure to http://visualgo.net/list
 Exposure to C++ STL list
 http://en.cppreference.com/w/cpp/container/list

[CS1020E AY1617S1 Lecture 6b] 24

