
Lecture 6b
Linked List Variations

Similar but not the same

Linked List Variations: Overview
 The linked list implementation used in List ADT is

known as Singly (Single) Linked List
 Each node has one pointer (a single link),

pointing to the next node in sequence

 Using pointers allow the node to be non-
contiguous:
 flexible organizations in chaining up the nodes

 Several high level ADTs utilize variations of
linked list as internal data structure

 Let's look at a few common choices
[CS1020E AY1617S1 Lecture 6b] 2

Common Variations: At a glance
 Using list node with one pointer:

1. Tailed Linked List
2. Circular Linked List
3. Linked List with a dummy head node

 Using list node with two pointers:
1. Doubly linked list
2. Circular doubly linked list

 Other variations are possible:
 Once you understand the fundamental, it is quite

easy to extend to other organizations!
[CS1020E AY1617S1 Lecture 6b] 3

Tailed Linked List

Head and tail: First and last

Tailed Linked List

a1 a2 a3 a4

 Motivation:
 The last node in singly linked list takes the longest

time to reach
 If we keep adding item to the end of list

(some applications require this) very inefficient
 Simple addition:

 Keep an additional pointer to point to the last node

[CS1020E AY1617S1 Lecture 6b] 5

head tail

Circular Linked List

Go round and round

Circular Linked List

a1 a2 a3 a4

 Motivation:
 Sometimes we need to repeatedly go through the

list from 1st node to last node, then restart from
1st node, ….

 Simple addition:
 Just link the last node back to the first node
 No NULL pointer in the linked list

[CS1020E AY1617S1 Lecture 6b] 7

head

Circular Linked List: Even Better

a1 a2 a3 a4

 Circular Linked List can be made even better:
 Keep the tail pointer instead of head pointer
 We now know both the first node and the last

node with a single pointer
 Simple addition:

 Keep track of the tail pointer

[CS1020E AY1617S1 Lecture 6b] 8

tailHow do we get to the first
node with just the tail pointer?

Circular Linked List: Common Code
 Given a circular linked list:
 How do we know we have passed through every

nodes in the list?
 Idea:
 If we land on a node again (e.g. the first node),

then we have finished one round

9[CS1020E AY1617S1 Lecture 6b]

curPtr = head;
do {

// visit the node curPtr points to
curPtr = curPtr->next;

} while (curPtr != head); Simple solution
as long as the
list is not empty

Dummy Head Node

There is a dummy in front!!

Linked List with Dummy Head Node

a1 a2 a3 a4

 Motivation:
 Insert/Remove the first node in linked list is a special

case:
 Because we need to update the head pointer

 Idea:
 Maintain an extra node at the beginning of the list

 Not used to store real element
 Only to simplify the coding

[CS1020E AY1617S1 Lecture 6b] 11

head

Doubly Linked List

Two is better than one

Doubly Linked List: Motivation

 Singly Linked List only facilitates movement
in one direction
 Can get to the next node in sequence easily
 Cannot go to the previous node

 Doubly Linked List facilitates movement in
both directions
 Can get to the next node in sequence easily
 Can get to the previous node in sequence easily

[CS1020E AY1617S1 Lecture 6b] 13

[CS1020E AY1617S1 Lecture 6b]

A single node in the Doubly Linked List

struct DListNode {
int item;
DListNode *prev;
DListNode *next;

};

item

prev DListNode

Store a single
integer in this

example

14

next

A pointer to the
previous node in

list
A pointer to the

next node in list,
similar to singly

linked list

An example of Doubly Linked List
 List of four items < a1, a2, a3, a4 >

A single DListNode

a1 a2 a3 a4

next pointer
prev pointer

 We need:
 head pointer to indicate the first node
 NULL in the prev pointer field of first node
 NULL in the next pointer field of last node

[CS1020E AY1617S1 Lecture 6b] 15

head

Doubly Linked List: Operations
 Insertion and removal in doubly linked list has

the similar steps as in singly linked list:
 Locate the point of interest through list traversal
 Modify the pointers in affected nodes

 However, insertion and removal affects more
nodes in doubly linked list:
 Both the nodes before and after the point of

operation are affected

 We only show the general case for insertion and
removal in the next section
 Try to figure out the code for other special cases

16[CS1020E AY1617S1 Lecture 6b]

Doubly Linked List: General Insertion
 Assume we have the following:

 newPtr pointer:
 Pointing to the new node to be inserted

 cur pointers:
 Use list traversal to locate this node
 The new node is to be inserted before this node

cur

…

newPtr
Insert here

head

a1 ai ai+1…

[CS1020E AY1617S1 Lecture 6b] 17

anew

anew

Doubly Linked List: General Insertion

newPtr

Step 1:

newPtr->next = cur;
newPtr->prev = cur->prev;

Step 2:

cur->prev->next = newPtr;
cur->prev = newPtr;

cur

ai ai+1

anew

newPtr

cur

ai ai+1

[CS1020E AY1617S1 Lecture 6b] 18

Doubly Linked List: General Deletion

 Assume we have the following:
 cur pointer:

 Points to the node to be deleted

cur

…

head

a0 ai ai+1…

Delete this node

[CS1020E AY1617S1 Lecture 6b] 19

ai+2

Deletion: Using Doubly Linked List

Step 1:

cur->prev->next = cur->next;
cur->next->prev = cur->prev;

Step 2:

delete cur;
cur = NULL;

cur

ai+1

ai+2

cur

ai ai+1

ai+2

ai

[CS1020E AY1617S1 Lecture 6b] 20

Linked List Variation: More?
 By using the ideas discussed,

we can easily construct:
 Tailed Double Linked List
 Doubly Linked List with dummy head node
 Circular Doubly Linked List
 etc…

 Rather than memorizing the variations:
 Make sure you understand the basic of pointer

manipulation
 Make sure you can reason about the pros and

cons of each type of organization

21[CS1020E AY1617S1 Lecture 6b]

http://visualgo.net/list
 VisuAlgo version:

 With Tail Pointer, Not Circular, Without Dummy Head
 Operations Supported (integer list only):

 Create List: Random, R Sorted, R Fixed Size, User Defined List
 Insert: At Head, At Tail, At Index K
 Remove: At Head, At Tail, At Index K
 Search

 Please explore:
 http://visualgo.net/list,

Single Linked List
 http://visualgo.net/list

?mode=DLL,
Doubly Linked List

22[CS1020E AY1617S1 Lecture 6b]

C++ STL list
 Do we have to code ListLL.cpp (and all these

variations and special cases) every time we
need to use a Linked List?

 Fortunately, no
 We can use C++ STL list
 http://en.cppreference.com/w/cpp/container/list

23[CS1020E AY1617S1 Lecture 6b]

Summary
 Singly Linked List with Dummy Head Node
 Tailed Singly Linked List
 Circular Singly Linked List
 Doubly Linked List
 Exposure to http://visualgo.net/list
 Exposure to C++ STL list
 http://en.cppreference.com/w/cpp/container/list

[CS1020E AY1617S1 Lecture 6b] 24

